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Transition Contents of Lecture  

1 Introduction (with movies/pics) and Transition Road Map 

2 Primary-Instability Concept (Linear Stability Theory, LST) 

2.1  Nonlinear disturbance equation 

2.2  Basic stability and disturbance growth definitions 

2.3  Small wave-like disturbances  and modal exponential growth:  

         Orr-Sommerfeld Equation (OSE) 

2.4  Rayleigh’s and Fjortoft’s criteria, Squire theorem, OSE solution interpretation 

2.5  Analytical example: the piecewise linear mixing layer 

2.6  Results for self-similar boundary layers with pressure gradient and wing profiles 

3 Transition prediction based on e-to-the-N-method  

4 Instability Influencing Parameters 

4.1  Suction, wall temperature 

4.2  Compressibility/Mach number 

4.3  Self-induced crossflow in swept-wing boundary layer 

4.4  Non-modal (transient, algebraic) growth, Tu level, (discrete) roughness  

4.5  Final remarks and literature for §2-§4 
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Transition Contents of Lecture  

5 Secondary-Instability (SI), dynamical-structure formation and laminar breakdown 

5.1  Spectral secondary instability and the classical breakdown scenarios 

5.2  Localized (secondary) instability, crossflow-vortex-/streak-induced breakdown  

5.3  Turbulent spot, complex disturbances 

6 Transition Control 

6.1  Laminar Flow Control 

6.2  Turbulence  triggering 

6.3  Notes on actuators 

6.4  Final remarks and literature for §5-§6 
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Transition  1  Introduction: Scenario A – Basics, 1 
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Transition 2.6  OSE, results, 1  

• Orr-Sommerfeld equation: TS-waves that represent downstream travelling 

  “infinitely small counterrotating spanwise vortices” can grow exponentially in a boundary layer 

• Stability diagram (2-d waves): instability inside “banana”, see below [5] 

• Strong “inviscid” instability if U(y) has an inflection point (IP) and here the spanwise vorticity 

   (~|dU/dy|) has a maximum as, e.g., for Falkner-Skan profiles with H<0 

• Without IP: only viscous instability; the diagram closes for large Re because dU/dy~ -1  
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Transition 2.6  Wing profiles, experiment, 1   

Position of boundary-layer instability onset (left) and transition (right) on a wing 
profile as function of chord Re number and lift coefficient cl . A - boundary-layer 
separation for laminar flow until A; M - pressure minimum; S - stagnation point. 
For ReL5106 transition occurs downstream of or around M [2].          
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Transition 

• Visualizations in experiments, Blasius flow (smoke, laser light sheet) 

K-Typ (Saric 1984, see [12]) 

H-Typ (Saric 1984, see [12]) 

O-Typ (Wiegel, Bippes 1997, 

                                  see [28]) 

 
U 

5.1  SSI and classical breakdown scenarios, 12  

3-d waves streaks (0,2) 
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Transition 5.1  Structure formation and breakdown scenarios, 15 (DNS) 

  

  
• Details of K-Breakdown (with adverse pressure): spanwise vorticity / shear-layers [25, 27]  

Snapshots 

during one 

fundamental 

time period 

with downstream 

rolling 

separation zone 

due to large-

amplitude 2-d 

TS wave in the 

decelerated 

Falkner-Skan-

layer. Does not 

appear with 

Blasius flow, 

falsifying fig. 

16.14 in [2]. 

   peak plane /-head plane (z=z0) … between ’s (z0+ z /2), here not valley but co-peak plane  

vortex ring ejection    

causes spikes in u-signal 

and is very sensitive to 
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 randomization 
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Transition 5.2  LSI/Crossflow breakdown, 5 

 

crossflow 

vortices by 

primary instability 

(and eventually 

saturation) 

high-frequency 

disturbances by secondary 

instability 

of (nearly-saturated) vortices 

 

roughness 

laminar          transitional    turbulent 

• Steady-crossflow-vortex induced breakdown in a 3-d boundary layer on a swept wing 

• The subsequent DNS results are for the base flow introduced in §4.3, 3-6, [31] 
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Transition 

ws 

us 

low-frequency type-III (z)-mode 

high-frequency type-I (z)-mode 

us-amplitudes 

in crosscut 
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5.2  LSI/Crossflow breakdown, 6 (DNS) 

• Steady-crossflow-vortex induced 

                              breakdown [31] 

    

us 

 and vortex  
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Transition 5.2  LSI/Crossflow breakdown, 10 

• Experimental visualization of (slow) crossflow-vortex induced breakdown 

   on a spinning body of revolution by smoke 

    

specialty: in the beginning also TS waves can be seen. 

(Mueller, Nelson, Kegelmann, Morkovin 1981, see [38]) 

 
U 
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Transition 6.1  Laminar Flow Control, DNS, 5 

„Natural“ 

scenario 
With forcing of closer-spaced control vortices 

upstream (Upstream Flow Deformation, UFD ) 

• Example to method B: Passive suppression / delay of crossflow-vortex induced transition 

   in a 3-d boundary layer by forcing of narrow-spaced vortices (UFD/DRE method) with 2/3z 

                                                                                                       of the naturally most amplified 

                                                                                                       mode. Note that the 2/3 z 

                                                                                                       control mode needs to be more 

                                                                                                       amplified initially, and then be 

                                                                                                       damped, i.e. the stability dia- 

                                                                                                        gram over the x--plane must 

                                                                                                        have a thumb shape, see 

                                                                                                        §4.3, 5. The control mode is  

                                                                                                         sometimes called ‘subcritical’ 

                                                                                                         referring to its z being smaller 

                                                                                                          than the one of the turbulence  

                                                                                                          triggering mode (DNS [31]). 

 

                                                                                                           

U 
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Transition 4.5  Literature to §2-§4, 1  
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Transition 4.5  Literature to §2-§4,  2  
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Transition 
   

6.4  Literature for §5-§6, 1  (see also §4.5)  
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Transition 
   

6.4  Literature for §5-§6, 2  (see also §4.5)  
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Transition 
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6.4  Literature for §5-§6, 4  (see also §4.5)  
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